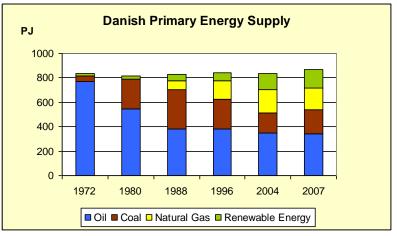
THE ROLE OF ALTERNATIVE ENERGY PLANNING AND MODELLING IN SUSTAINABLE ENERGY TRANSITION

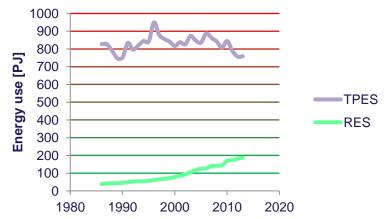
THE CASE OF DENMARK

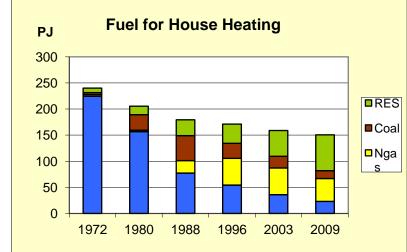
POUL ALBERG ØSTERGAARD PROFESSOR IN ENERGY PLANNING AALBORG UNIVERSITY, DENMARK

Agenda

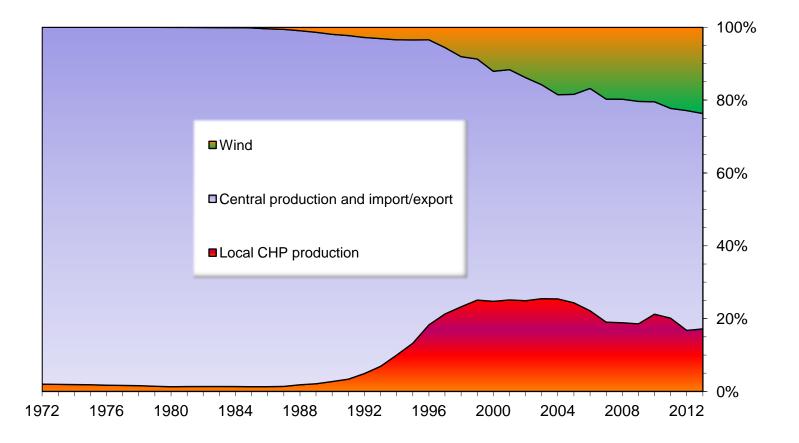
- Short introduction to the results of Danish energy planning
- The role of energy planning in the transition including the interaction between academia, interest organisation and official planning
- The role of energy system simulation and analysis
- (If time permits Two cases of policies to assist the establishment of wind power and CHP)


SHORT INTRODUCTION TO THE RESULTS OF DANISH ENERGY PLANNING




Danish energy system at a glance

- Stable primary energy supply over 40 years
- ~50% of electricity from cogeneration of heat and power
- >55% District Heating
- ~40% wind power
- High share of the world's offshore wind power



AALBORG UNIVERSITY

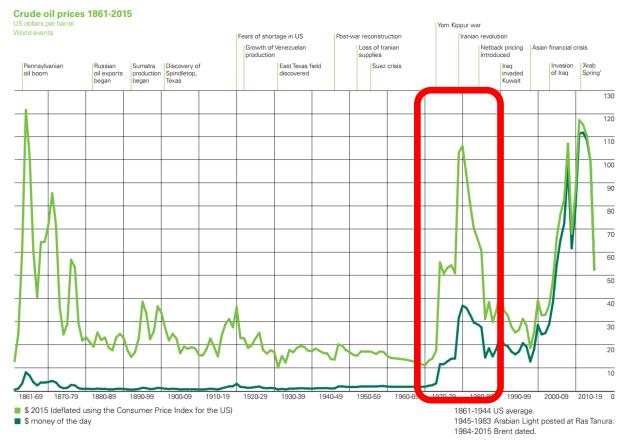
DENMARK

Danish electricity supply – wind and CHP

From a central to a distributed energy system

2013

 Centralt kraftvarmeværk Decentralt kraftvarmeværk 	Central CHP Local CHP
Vindmølle	Wind
Havvindmølle	Off-shore wind
	AC Interconnection
— Udlandsforbindelse (jævnstrøm)	DC interconnection



THE ROLE OF ENERGY PLANNING IN THE TRANSITION INCLUDING THE INTERACTION BETWEEN ACADEMIA, INTEREST ORGANISATION AND OFFICIAL PLANNING

The role of energy planning in the transition

• Energy planning and energy system modelling was not a topic prior to the 1970s – however that situation changed abruptly

AALBORG UNIVERSITY DENMARK

Danish Energy plans

Name	Fuel	RE target	Approach	Focus
Danish Energy policy 1976	Nuclear	None	One alternative Pro-gnostic	Security of supply
Energy plan 81	Coal	Marginal	More alternatives Prognostic	Socio-economic costs
Energy 2000	NG	Some	Programmatic	Environment
Energy 2000 – follow up	NG	Some	ditto; IRP	Ditto
Energy 21 (1996)	NG	More	ditto + market	Environment Re-regulation
Energy strategy 2025 (2005)	-	None	Market based	"Liberalisation" and market opening
A visionary Danish Energy policy 2025 (2007)	RE	30% & 100%	Market based	Unreliable suppliers Climate change
Energy strategy 2050 (2011)	RE	100%	Market based	Unreliable suppliers Climate change

Alternative energy plans

Name	Focus	Result
Draft to an alternative energy plan 76	Alternatives to nuclear	Appricitation of a multi-fuel strategy
Alternative energy plan 83	Technical alternatives	Away from growth philosophy
Energy action plan 90	Public regulation	Action plan approach
MOSAIK + Local energy markets (2005)	Technical options for full-scale integration of RE	Realisation of the possibility of substantial RE integration
IDA / CEESA / Local energy plans (>2005)	100% RE systems	(Municipal involvement)

Choice awareness and radical technological change

Choice awareness theory [Lund]

- Choices in democratic decision-making
- True choices and false choices
- Hobson's choice

Radical technological change

- "Technology" embraces technique, knowledge, organisation, products and profit [Müller, Remmen and Christensen later expanded by Hvelplund]
- Changes in technology can be measures in terms of how many constituents that are changed. More than one is denoted "radical technological change" [Hvelplund]

Choice awareness theory and technological change theory calls for energy systems scenario-making combined with analyses of the components of "technology" to be changed

THE ROLE OF ENERGY SYSTEM SIMULATION AND ANALYSIS

Three phases of introducing Renewable Energy

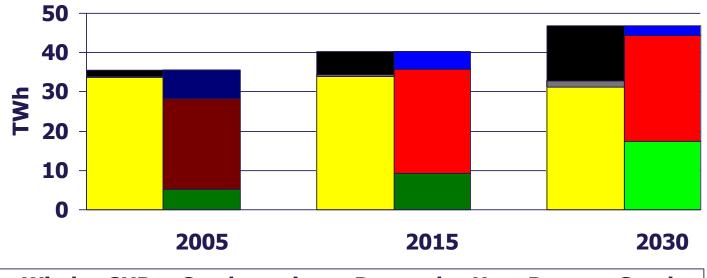
1. Introduction phase

Small marginal shares of RES leading to high fuel savings (pr. Unit) by replacing marginal units.

2. Large-scale integration phase

Fuel savings vary during the season and from one hour to another due to varying system impacts

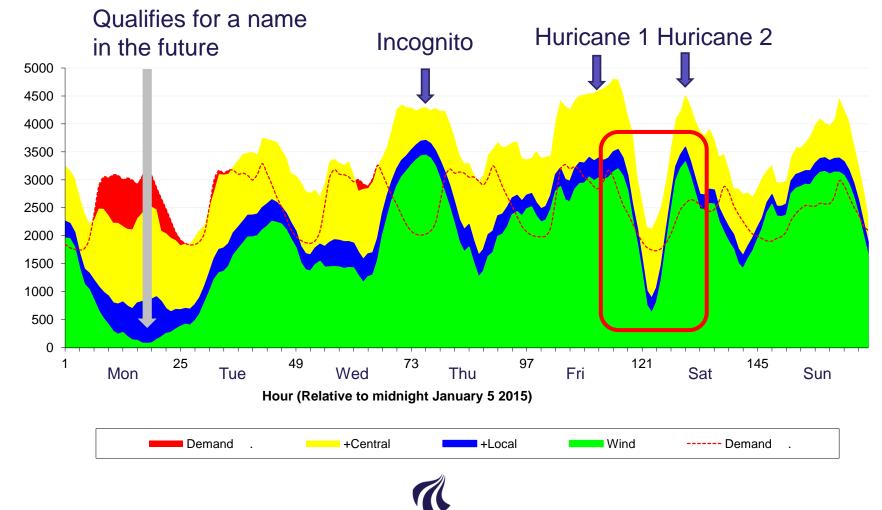
3. The 100% renewable energy phase


Focus on different renewable energy sources and their ability to be integrated with savings, efficiencies and energy demands.

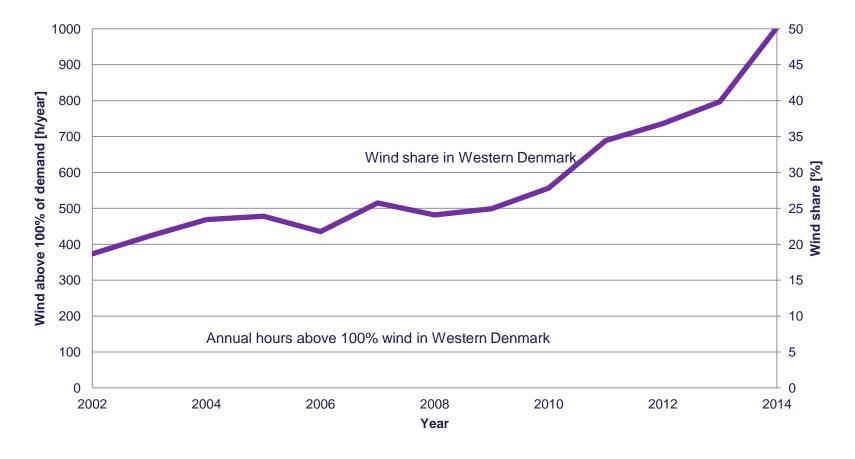
In general – increasing complexity and integration

Reference excess production

Energy 21 (Government Energy Plan 1995)



Wind CHP Condensation Demand Heat Pump Surplus


A week in Western Denmark in 2015

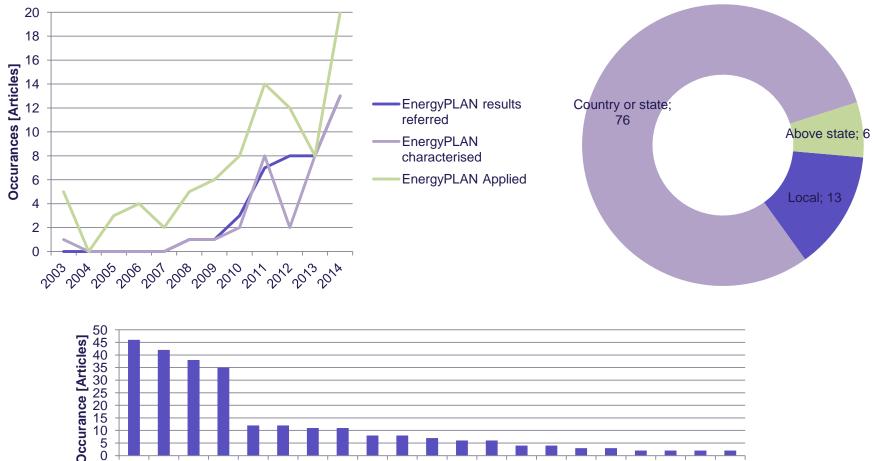
Production and demand [MW]

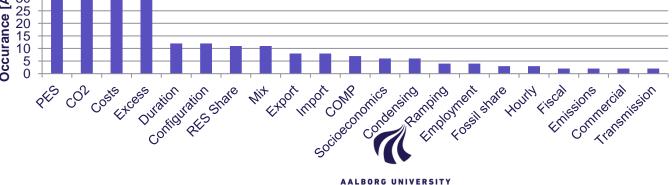
AALBORG UNIVERSITY DENMARK 15

The issue of excess power generation

Large-scale RE integration requires sector integration

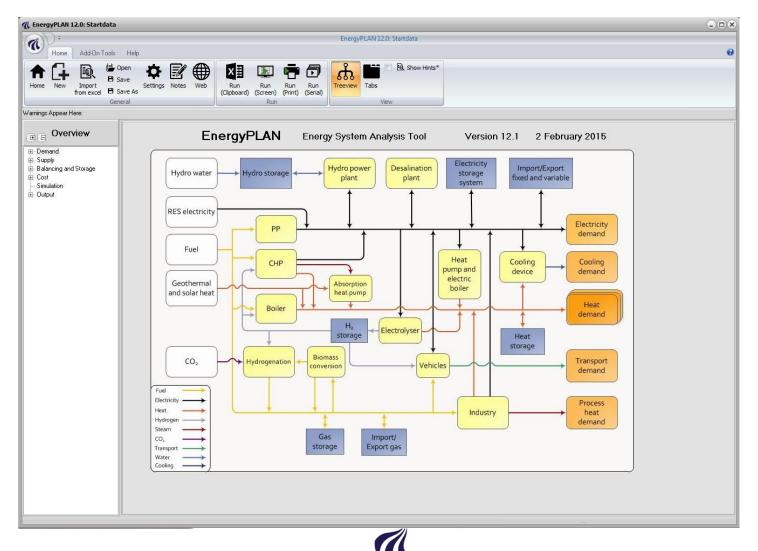
OCycle efficiency


Source: dx.doi.org/10.5278/ijsepm.2016.11.2

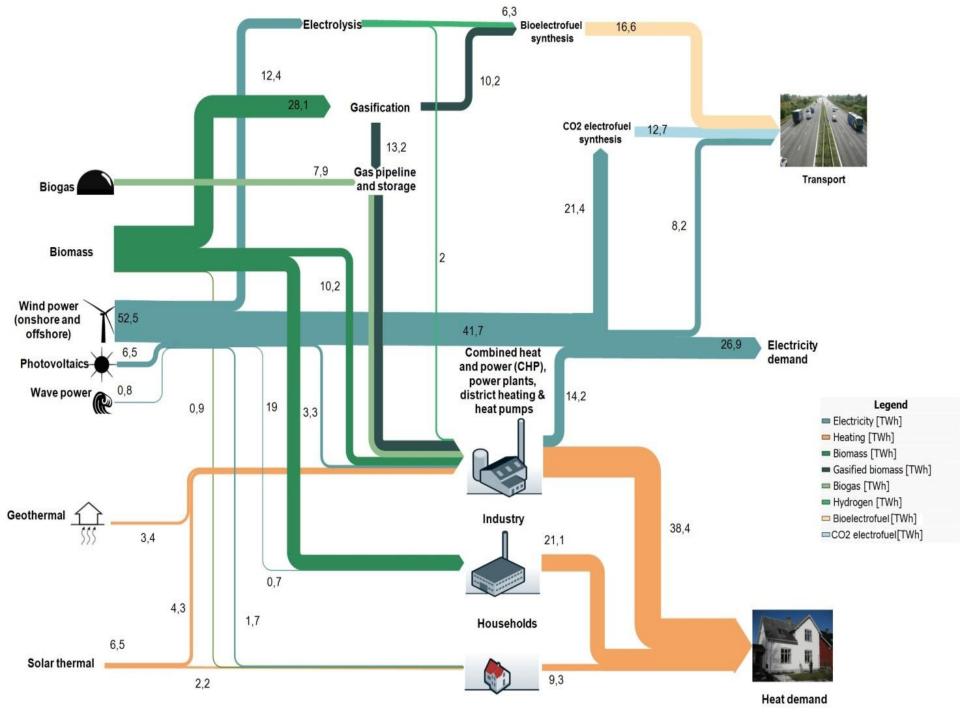

The role of energy system simulation and analysis

- The higher the complexity, the higher the demands for simulation and analysis
- The integration of high shares of renewable requires integration across electricity, heating, cooling, transportation and industry
- Different tools to assist in this process however they vary in scope, temporal resolution, methodology and more
- One model that has been applied in a number of projects is the EnergyPLAN model, which has been influential on the development of the EU policy on district heating and cooling through a series of Heat Roadmap Europe projects

Application of EnergyPLAN in the academic literature


DENMARK

Main characteristics of the EnergyPLAN model


- Holistic
 - encompassing all sectors
 - focus on sectors and technologies with connections
- Aggregated
 - All technologies are typically represented by one unit
 - All technologies of a given kind thus share key-parameters such as efficiency
- Hourly on a yearly basis (leap year)
- Technical or economic optimisation
- Analytically programmed
 - Endogenous priorities and analytical procedures to optimise operation
- Fast
 - Computation time measured in seconds
 - Fast interaction with the user

Evolution of EnergyPLAN - Present version (12)

AALBORG UNIVERSITY Denmark

THE ROLE OF ALTERNATIVE ENERGY PLANNING AND MODELLING IN SUSTAINABLE ENERGY TRANSITION

THE CASE OF DENMARK

POUL ALBERG ØSTERGAARD PROFESSOR IN ENERGY PLANNING AALBORG UNIVERSITY, DENMARK

TWO CASES OF POLICIES TO ASSIST THE ESTABLISHMENT OF WIND POWER AND CHP

Case: Wind power in Denmark

Initial conditions

- 30% investment subsidy
- Utility obligation to buy wind power at a price equal to 85% of a 20000 kWh/year consumer
- A right to produce up to 7000 kWh wind power without income tax payment
- Establishment of a public wind power research centre at Risø
- Surplus capacity in the industry looking for new areas
- A motivated population
- Wind power co-operatives

Case: CHP in Denmark

- Low interest loans were made available in the mid-eighties
- The establishment of a consumer-owned CHP DH co-operative was consistent with Danish traditions
- In 1988 a specific and publicly open set of rules for the pricing of natural gas for CHP was set up
- In 1989 a law was introduced obliging the municipalities to guarantee the loans
- At the end of 1988 standard payment rules based on the **long term** marginal costs were introduced
- In 1991 a standard set of rules concerning costs associated with grid expansion was agreed upon
- In addition to the above mentioned prices came a 0.1 DKR/kWh "CO₂-10 øre" introduced in 1993 (=4 Florint)

Case: CHP in Denmark

In Sønderholm, there was an active five-person ginger group that

- was willing and able to analyse technical alternatives, negotiated with electricity companies and arrange public meetings. They secured the support of 84 of the houses
- It was possible to work out a solution where the consumers were to raise less funds than if they did not join the co-operative. They only had to pay 100 DKK to become members

DENMARK

THE ROLE OF ALTERNATIVE ENERGY PLANNING AND MODELLING IN SUSTAINABLE ENERGY TRANSITION

THE CASE OF DENMARK

POUL ALBERG ØSTERGAARD PROFESSOR IN ENERGY PLANNING AALBORG UNIVERSITY, DENMARK

